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Excluded volume in polymer chains 
A. KYSELKA 
Zbrojovka Brno, Czechoslovakia 
MS.  received 9th September 1968, in revised form 5th February 1969 

Abstract. There the theory of the excluded volume effect for a polymer chain is 
given. The mutual interaction of the monomer units is approximated by the repulsive 
potential of hard spheres. 

In a single-contact approximation formulae were obtained, for small volume 
effects, which were identical with the Fixman perturbation theory of the first order. 
The theory can be extended, in principle, to models of a chain with a larger number 
of contacts. 

1. Introduction 
The Ursell-Mayer statistical theory of imperfect gases has been applied by many 

authors (e.g. Fixman 1955, Grimley 1959, Alexandrowicz 1967, etc.) to various models of 
polymer chains with a variable link length. Their theory emanates from the assumption 
that the factor rIIN k expi- v(.'(Rjk),kT), which considers the interaction between the gas 
particles, may be replaced by the expression r I y < k  expi- ,%i(Rjk)}, where v(.'(Rjk) is the 
interaction potential between the j th  and Kth particle, the distance between which is 
Rjk = p is the effective excluded volume and 6 ( R j k )  is the three-dimensional Dirac 
&function. The  said assumption means that the authors consider the volume effects as 
small a priori. 

On the other hand, James (1953) took into consideration the number of ways in which 
the chain, described in the said model, may be extended if there is one link added to it 
without violating the condition of the excluded volume. In  this way he came to the con- 
clusion that his theory probably overestimates the effect of the excluded volume. 

Rubin (1952) estimated the upper limit of the quantity (Rr2)-the mean-square 
length of polymer chain-using the assumption that the interaction potential between the 
monomer units can be approximated by the repulsive potential of hard spheres with a 
radius $8 > 0. Owing to difficulties of a mathematical character this estimate has not been 
carried out in Rubin's (1952) paper for the three-dimensional case. The theory, resulting 
from Rubin's assumption, completes evidently the two said theories in the sense that it 
operates only with the permissible configurations in which the condition IRi& > 8 is 
fulfilled. 

This work aims to show that in the single-contact approximation the Rubin assumptions 
lead to the Fixman perturbation theory of first order. 

2. Calculation 

as 
According to Rubin (1952), the mean-square length of the chain can be formally written 

(R,v2> = - - (1) 

(2) 

I'(.*)l I(.*) a = @  

m 
where 

~(a) = j . .. 1 pX(r, ,  . . ., r N )  exp [ - a (L;l 2 rl )1 dr, *"drN 
- m  

where Pdv( rl, ..., r,) is the unnormalized random walk distribution function of the chain, 
in which is included the repulsive interaction of hard spheres : 
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The exponential factor on the right-hand side of expression (3) is the Gaussian distribution 
of N random walks, u2 = g ( r i 2 } ,  and the second factor modifies this distribution with 
respect to the excluded volume effect. e j k  is the Heaviside step function, which, according 
to Kyselka (1968), can be written 

c. 
8 j k  = lim - 

E -10, 27 ' J  - m  - 
The step function d j k  is a special case of the characteristic function and thus 

A' N 

e ( R i k 2 - 6 2 )  = (1 - 8 ( S 2 - R j k 2 ) )  

( 5 )  
j < k  < k  

= 1- 2 fi2 ,k -k  2 2 f i j k f i r s -  e . .  

i < k  i < k  rcs 

f i j k  = 0 ( S 2 - R j k 2 )  

is valid. 

of the repulsion of monomer units by hard spheres : 
In  the Ursell-Mayer theory, the following potential corresponds to the approximation 

These conditions are satisfied only for small values of R,, which in actual fact influence 
the choice of the positive number S. Under the conditions (6) the effective excluded volume 
(Fixman's binary cluster integral) is 

In  a single-contact approximation, 

j = O  k = j + l  j = O  k= j + l  

according to ( 5 ) .  This expression will be substituted into (2) and the integration over the 
space variables can be preceded by the integration over the variable 7. The integral over the 
space variables is given in Rubin (1952). One may then obtain 

1 r i v u  U"/ 

pa% -) I AT-2.. > 0. 

The  validity of the single-contact approximation is determined by the condition I(0) > 0; 
from this follows the magnitude of the parameter 6. Should this condition not be satisfied, 
expression (8) could, for large values of N ,  assume negative values. The  limiting expression 
in the curly bracket of relation (8) has the value (see appendix) 



Excluded volume in polymer chains 407 

and for the expansion factor of the chain, ct2 = (RN2) /$Va2,  we have according to (2) 

N e- r i s  2 (N-s+l)-- 

1-- c ( N - S + 1 )  dTe- 'dT 
(10) - 4y3'2 s = 1  4 s  

42 = 1+- 
3Ndn 2 N  Y: S I, d T s = 1  

y = 2i2/a2 and the double summation has been replaced by a single one. In the hard-sphere 
approximation the excluded volume is characterized by the parameter x 

4y3'2 3 i 2  

= -2/N = (2-1 PdN, a2 = @2. 
3 d x  2rb2 

By rearranging expression ( lo)  we obtain in the expansion in terms of y,  in the lowest 
power of y, 

By using the asymptotic expansion of the function Cy=, l / s n  we obtain after introducing 
the parameter x 

where <(B)  is Riemann's c-function. The linear approximation in the parameter x is 

which is valid for 

5. Conclusion 
The result of this paper is a re-evaluation of the results of Rubin (1952) who was 

concerned with estimating the upper limit of the quantity ( R N 2 ) .  Rubin obtained explicit 
estimates in the following cases: (i) a Gaussian repulsion of monomer units and (ii) a 
hard-sphere repulsion of monomer units. In  case (i) these estimates were given by Rubin 
in 2, 3 and 4 dimensions, in the case (ii) in 2 and 4 dimensions only. The  important case 
of a three-dimensional space remained unsolved. In  the paper by Kyselka (1969 a) a 
single-contact approximation was calculated under assumption (i) and it was found that for 
small volume effects the result differs from the Fixman perturbation theory by a constant 
factor. For case (ii) the author, in a single-contact approximation for small volume effects, 
obtained a result that was identical with the Fixman perturbation theory of the first order. 
Therefore, it is possible to employ assumption (i) to estimate the upper limit of the quantity 
( R N 2 ) ,  but a more accurate estimate can be obtained by using the assumption (ii). 

Appendix 
1. Integral: 

m k 

I = I _ , S e x p ( - a ( ~ l x ~ ) 2 - P ~  i = 1  x?-y ( I= j + l  xi)')dx,...dxN. 

Solution: Let A denote the quadratic form in the exponent. Then A is positive definite, 
and thus there exists the linear transformation 

N 

x i  = 2 ttvtv, i = 1,2, ..., N 
v = 1  
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= phi-j-1 

which transforms the quadratic form to a sum of squares 

i a + p  u . . . u p u  
0 p . . . o  0 . .  . . .  * 

. .  
0 o . . . p  0 

Pr 0 * * 0 S+Pr 

2 a i j X i X j  = 2 t k 2  
Li k 

where ai, denotes the coefficients of the quadratic form A. Thus 

i.e. 

i.e. 

and because /!?I = [TI is [TI2[A[  = 1, (TI = IA1-Ii2, and therefore 

It is thus sufficient to find the determinant of the quadratic form A equal to 

j +  1 k 
: + p  x * . .  a x . . .  x u . . .  x 

j +  1 

IAl = 

k 

a + p . .  . a 

. .  
a . . . a + p  

x . . .  x 

a . . .  31 

u . . .  u 

u . . .  a 

a . . .  x a . . .  x 

x . . *  a a . . .  0. 

x + p + y  x + y  ... a + y  x e . .  I 

a + y  u + p + y . . .  x + y  

E+Y . . . x + p + y  a . . . a 

u 9 . .  c5 c 5 + p . .  . c5 . .  
. .  

a . . .  u u . . . a+k 

By elementary transformations of this determinant we obtain 

= p”-j-l{(S ’ ~u+p)pi-’(p+py)+(-l)f+2py(-l)j+lpxpj-1) 
therefore 
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For the integral we obtain 
,N! 2 

I =  
[ p " - " ( N K  +py)  -p%y)]l'2 

409, 

2. Integral: 

Solution : 
io d r  exp(-is2r) 

d r  exp( -iS27) 
(p - ir)1!2 = 

Set p-ir = x ;  then p - x  = ir, i d 7  = -dx and 

By integrating exp(S2x)/(x- p + ~ ) d x  along the path C 

we obtain 

exp( - S2x) dx exp( - S2x) dx . exp(a2(p -e)) _ -  - 2n1 
0 ( x + P - E ) d X  - + i s  0 (x+ P-E)dx (p-E)1/2 * 

i n  rne 1111in E -+U+, A --f A, I --r U I> 

exp( - S2x) 
p(S2x) dn dx]. = 2i 

p + i m  ex s 0 - i m  ( X - P + E ) d X  0 (X+P)dX 
Thus 
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Now we have 
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i.e. 

m 

exp'-*2(X+p)' = JIds exp(-(x+p)t}dt 
X +  P 

m I=--- 4i d [z- /,$! exp(-(x+p)tjdt] 
h3I2 dp d p  

The inner integral is changed by the substitution xt = tz into the integral 

X 

- - 3 ~ p - ~ ' ~  + 2/n s,? exp( -p t ) l / t  dt) 

i.e. 

i.e. 
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